-
Graphing Data 4
-
Lecture1.1
-
Lecture1.2
-
Lecture1.3
-
Lecture1.4
-
-
Mean and Standard Deviation 5
-
Lecture2.1
-
Lecture2.2
-
Lecture2.3
-
Lecture2.4
-
Lecture2.5
-
-
Distributions 6
-
Lecture3.1
-
Lecture3.2
-
Lecture3.3
-
Lecture3.4
-
Lecture3.5
-
Lecture3.6
-
-
Correlation and Linear Regression 7
-
Lecture4.1
-
Lecture4.2
-
Lecture4.3
-
Lecture4.4
-
Lecture4.5
-
Lecture4.6
-
Lecture4.7
-
-
Probability 3
-
Lecture5.1
-
Lecture5.2
-
Lecture5.3
-
-
Counting Principles 3
-
Lecture6.1
-
Lecture6.2
-
Lecture6.3
-
-
Binomial Distribution 3
-
Lecture7.1
-
Lecture7.2
-
Lecture7.3
-
-
Confidence Interval 7
-
Lecture8.1
-
Lecture8.2
-
Lecture8.3
-
Lecture8.4
-
Lecture8.5
-
Lecture8.6
-
Lecture8.7
-
-
Proportion Confidence Interval 3
-
Lecture9.1
-
Lecture9.2
-
Lecture9.3
-
-
Hypothesis Testing 5
-
Lecture10.1
-
Lecture10.2
-
Lecture10.3
-
Lecture10.4
-
Lecture10.5
-
-
Comparing Two Means 5
-
Lecture11.1
-
Lecture11.2
-
Lecture11.3
-
Lecture11.4
-
Lecture11.5
-
-
Chi-squared Test 3
-
Lecture12.1
-
Lecture12.2
-
Lecture12.3
-
Random Walk
Extending the idea of randomness, we can create a random walk simulation. The random walk simulation gets a random movement each period where there isn’t a bias in the expected value of the random movement. Many people claim this is how stocks can sometimes act, but that’s up for you to decide.
from random import randint
print(randint(-1, 1))
The above code will print out a number -1, 0, or 1. We want one of these three numbers for deciding where our random walk goes.
Challenge
Create a random walk where you record each position of the walker in an array, then plot the random walk over time.
Prev
Introduction
Next
Random Walk Part 2