-
Graphing Data 4
-
Lecture1.1
-
Lecture1.2
-
Lecture1.3
-
Lecture1.4
-
-
Mean and Standard Deviation 5
-
Lecture2.1
-
Lecture2.2
-
Lecture2.3
-
Lecture2.4
-
Lecture2.5
-
-
Distributions 6
-
Lecture3.1
-
Lecture3.2
-
Lecture3.3
-
Lecture3.4
-
Lecture3.5
-
Lecture3.6
-
-
Correlation and Linear Regression 7
-
Lecture4.1
-
Lecture4.2
-
Lecture4.3
-
Lecture4.4
-
Lecture4.5
-
Lecture4.6
-
Lecture4.7
-
-
Probability 3
-
Lecture5.1
-
Lecture5.2
-
Lecture5.3
-
-
Counting Principles 3
-
Lecture6.1
-
Lecture6.2
-
Lecture6.3
-
-
Binomial Distribution 3
-
Lecture7.1
-
Lecture7.2
-
Lecture7.3
-
-
Confidence Interval 7
-
Lecture8.1
-
Lecture8.2
-
Lecture8.3
-
Lecture8.4
-
Lecture8.5
-
Lecture8.6
-
Lecture8.7
-
-
Proportion Confidence Interval 3
-
Lecture9.1
-
Lecture9.2
-
Lecture9.3
-
-
Hypothesis Testing 5
-
Lecture10.1
-
Lecture10.2
-
Lecture10.3
-
Lecture10.4
-
Lecture10.5
-
-
Comparing Two Means 5
-
Lecture11.1
-
Lecture11.2
-
Lecture11.3
-
Lecture11.4
-
Lecture11.5
-
-
Chi-squared Test 3
-
Lecture12.1
-
Lecture12.2
-
Lecture12.3
-
Mean and Standard Deviation
Let’s formally define the mean equation first.
Equation
$$\overline{x} = \frac{\sum_{i=1}^{n}x_i}{n}$$
$$\overline{x} = \text{Mean of Distrbution}$$
$$ x_i = \text{The ith value of x}$$
$$ n = \text{Number of Data Points} $$
$$\overline{x} = \text{Mean of Distrbution}$$
$$ x_i = \text{The ith value of x}$$
$$ n = \text{Number of Data Points} $$
And now, let’s define standard deviation. There are two different versions, the population standard deviation and the sample standard deviation. The population is supposed to be used when we know the entire population, where as the sample is used when we only have a sample of the population. These are both the square root of their respective variances…the variances equal:
Equation
$$\sigma^2 = \frac{\sum_{i=1}^{n}(x_i-\overline{x})^2}{n}$$
$$\sigma^2 = \text{Population Variance}$$
$$\overline{x} = \text{Mean of Distrbution}$$
$$ x_i = \text{The ith value of x}$$
$$ n = \text{Number of Data Points} $$
$$\sigma^2 = \text{Population Variance}$$
$$\overline{x} = \text{Mean of Distrbution}$$
$$ x_i = \text{The ith value of x}$$
$$ n = \text{Number of Data Points} $$
Equation
$$s^2 = \frac{\sum_{i=1}^{n}(x_i-\overline{x})^2}{n-1}$$
$$s^2 = \text{Sample Variance}$$
$$\overline{x} = \text{Mean of Distrbution}$$
$$ x_i = \text{The ith value of x}$$
$$ n = \text{Number of Data Points} $$
$$s^2 = \text{Sample Variance}$$
$$\overline{x} = \text{Mean of Distrbution}$$
$$ x_i = \text{The ith value of x}$$
$$ n = \text{Number of Data Points} $$
The only difference is the n is n-1. For standard deviation, we just need the square root.
Equation
$$\sigma = \sqrt{\frac{\sum_{i=1}^{n}(x_i-\overline{x})^2}{n}}$$
$$\sigma = \text{Population Standard Deviation}$$
$$\overline{x} = \text{Mean of Distrbution}$$
$$ x_i = \text{The ith value of x}$$
$$ n = \text{Number of Data Points} $$
$$\sigma = \text{Population Standard Deviation}$$
$$\overline{x} = \text{Mean of Distrbution}$$
$$ x_i = \text{The ith value of x}$$
$$ n = \text{Number of Data Points} $$
Equation
$$s = \sqrt{\frac{\sum_{i=1}^{n}(x_i-\overline{x})^2}{n-1}}$$
$$s = \text{Sample Standard Deviation}$$
$$\overline{x} = \text{Mean of Distrbution}$$
$$ x_i = \text{The ith value of x}$$
$$ n = \text{Number of Data Points} $$
$$s = \text{Sample Standard Deviation}$$
$$\overline{x} = \text{Mean of Distrbution}$$
$$ x_i = \text{The ith value of x}$$
$$ n = \text{Number of Data Points} $$
Challenge
Manually calculate the mean and both standard deviations.