-
Introduction 4
-
Lecture1.1
-
Lecture1.2
-
Lecture1.3
-
Lecture1.4
-
-
Production Possibilities Frontier 4
-
Lecture2.1
-
Lecture2.2
-
Lecture2.3
-
Lecture2.4
-
-
Trade 3
-
Lecture3.1
-
Lecture3.2
-
Lecture3.3
-
-
Demand 4
-
Lecture4.1
-
Lecture4.2
-
Lecture4.3
-
Lecture4.4
-
-
Supply 2
-
Lecture5.1
-
Lecture5.2
-
-
Equilibrium 4
-
Lecture6.1
-
Lecture6.2
-
Lecture6.3
-
Lecture6.4
-
-
Curve Movements 4
-
Lecture7.1
-
Lecture7.2
-
Lecture7.3
-
Lecture7.4
-
-
Elasticity and Revenue 5
-
Lecture8.1
-
Lecture8.2
-
Lecture8.3
-
Lecture8.4
-
Lecture8.5
-
-
Taxes 7
-
Lecture9.1
-
Lecture9.2
-
Lecture9.3
-
Lecture9.4
-
Lecture9.5
-
Lecture9.6
-
Lecture9.7
-
-
Consumer and Producer Surplus 8
-
Lecture10.1
-
Lecture10.2
-
Lecture10.3
-
Lecture10.4
-
Lecture10.5
-
Lecture10.6
-
Lecture10.7
-
Lecture10.8
-
-
Imports and Exports 4
-
Lecture11.1
-
Lecture11.2
-
Lecture11.3
-
Lecture11.4
-
-
Tariffs 2
-
Lecture12.1
-
Lecture12.2
-
Supply Schedule
Solution
import matplotlib.pyplot as plt
prices = []
hamburgers = []
for price in range(0,11):
prices += [price]
hamburgers += [price]
plt.plot(hamburgers,prices)
plt.xlabel("Quantity Supplied")
plt.ylabel("Price")
plt.show()
Let’s find aggregate supply like we did with demand. Let’s say there are two firms, one produces 1 unit for each price, and the other produces 2 for each price level increase.
prices = []
hamburgers = []
for price in range(0,11):
prices += [price]
hamburgers += [price]
plt.plot(hamburgers,prices)
prices = []
hamburgers = []
for price in range(0,11):
prices += [price]
hamburgers += [price*2]
plt.plot(hamburgers,prices)
prices = []
hamburgers = []
for price in range(0,11):
prices += [price]
hamburgers += [(price)+(2*price)]
plt.plot(hamburgers,prices)
plt.xlabel("Quantity Supplied")
plt.ylabel("Price")
plt.title("Combined Supply of Hamburgers")
plt.legend(['Producer 1','Producer 2','Combined'])
plt.show()
Shifting the supply curve or moving along the supply curve would work very much the same as for demand.
Source Code
Prev
Introduction
Next
Introduction