-
Present Values 3
-
Lecture1.1
-
Lecture1.2
-
Lecture1.3
-
-
NPV vs. IRR 4
-
Lecture2.1
-
Lecture2.2
-
Lecture2.3
-
Lecture2.4
-
-
Other Profit Measures 4
-
Lecture3.1
-
Lecture3.2
-
Lecture3.3
-
Lecture3.4
-
-
Depreciation 4
-
Lecture4.1
-
Lecture4.2
-
Lecture4.3
-
Lecture4.4
-
-
Cash Flow Challenges 9
-
Lecture5.1
-
Lecture5.2
-
Lecture5.3
-
Lecture5.4
-
Lecture5.5
-
Lecture5.6
-
Lecture5.7
-
Lecture5.8
-
Lecture5.9
-
-
Capital Asset Pricing Model 3
-
Lecture6.1
-
Lecture6.2
-
Lecture6.3
-
-
Risky Debt 3
-
Lecture7.1
-
Lecture7.2
-
Lecture7.3
-
-
Unlevering Equity 3
-
Lecture8.1
-
Lecture8.2
-
Lecture8.3
-
-
Weighted Average Cost of Capital 4
-
Lecture9.1
-
Lecture9.2
-
Lecture9.3
-
Lecture9.4
-
-
Debt Effect Analysis 2
-
Lecture10.1
-
Lecture10.2
-
-
WACC Challenge 2
-
Lecture11.1
-
Lecture11.2
-
-
Relative Valuation 4
-
Lecture12.1
-
Lecture12.2
-
Lecture12.3
-
Lecture12.4
-
-
Forward Contract Valuation 3
-
Lecture13.1
-
Lecture13.2
-
Lecture13.3
-
Creating the Depreciation Equation
Solution 1
def depreciation(initial,salvage,years):
return (initial-salvage)/years
Solution 2
import matplotlib.pyplot as plt
def depreciationFull(initial,salvage,years):
values=[initial]
value=initial
periods=[0]
charge = depreciation(initial,salvage,years)
for y in range(1,years+1):
periods+=[y]
value-=charge
values +=[value]
return values,periods
values,periods = depreciationFull(15000,0,3)
plt.plot(periods,values)
plt.xlabel("Year")
plt.ylabel("Equipment Value")
plt.title("Straight Line Depreciation")
plt.show()
The first solution finds our depreciation charge, and the second solution creates an array where every year we apply this depreciation charge to our equipment. The last 4 lines plot our equipment’s value.
Prev
The Basic Problem
Next
The Tax Shield